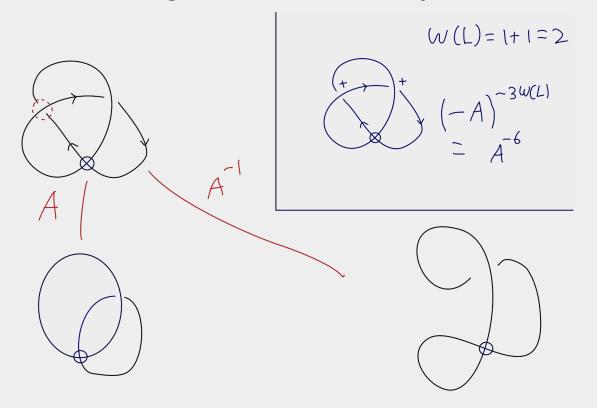
Virtual Knots, The Arrow Polynomial, and Checkerboard Colorability

By: Lozinskiy Leon, Pranav Jois

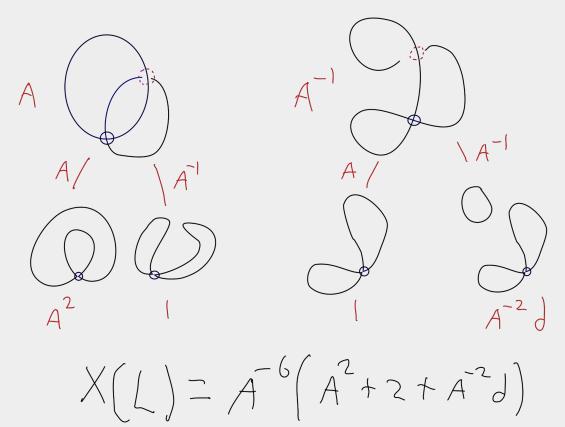
Recalling the Bracket Polynomial

 $\langle O \rangle = 1$ $\langle \times \rangle = A \langle \rangle \langle + A^{-1} \langle \times \rangle$ $\langle OUL \rangle = d \langle L \rangle$ $X(L) = \left(-A^{3}\right)^{-\omega(L)} \left(\sum \right)$ $A = \tilde{t}^{1/4} \rightarrow)$ ones $\int = \left(-\tilde{A} - \tilde{A}^2\right)$

Recalling the Bracket Polynomial



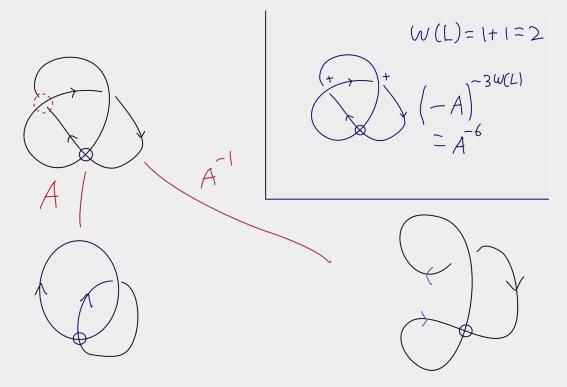
Recalling the Bracket Polynomial



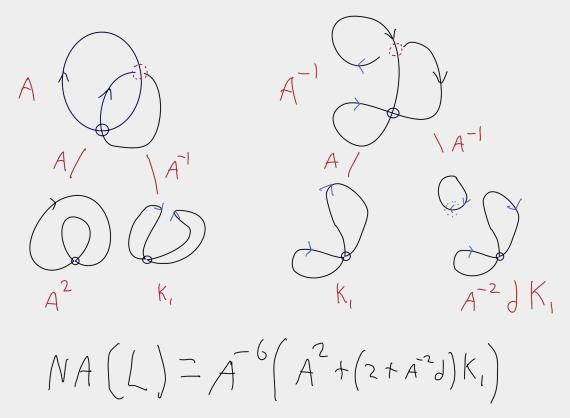
The arrow polynomial

 $\langle 0 \rangle = 1 \quad \langle 0 \rangle = K_1 \quad \langle 0 \rangle = K_2 \quad \dots$ $\left< \left< \right> = A \left< \right> + A^{-1} \left< \right> \right>$ $\langle \chi \rangle = A \langle \chi \rangle + A^{-1} \langle \chi \rangle$ $\langle O \cap \Gamma \rangle = \langle \langle \Gamma \rangle, \langle K, \cap \Gamma \rangle = \langle \langle \Gamma \rangle$ $NA(L) = (-A^3)^{-\omega(L)} \langle L \rangle$ $\int = \left(-A^2 - A^{-2} \right)$

The arrow polynomial



The arrow polynomial

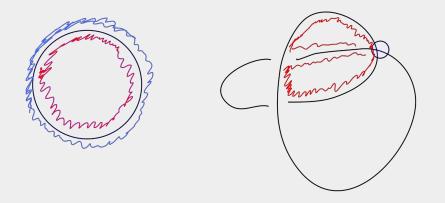


Relation to Virtual Crossing number

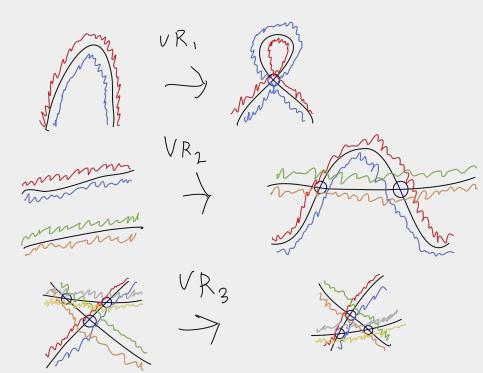
Theorem 2.3. Let K be a virtual link diagram. Then the virtual crossing number of K, v(K), is greater than or equal to the maximum k-degree of $\langle K \rangle_A$.

Dye-Kauffman (2018).

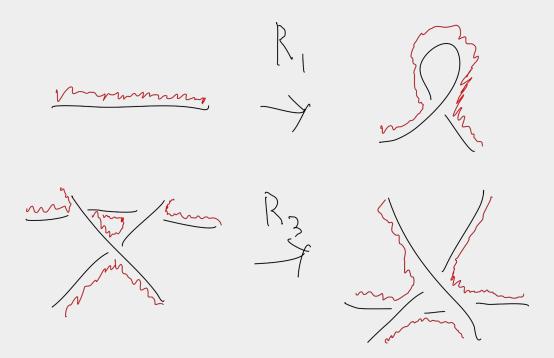
Checkerboard Colorability



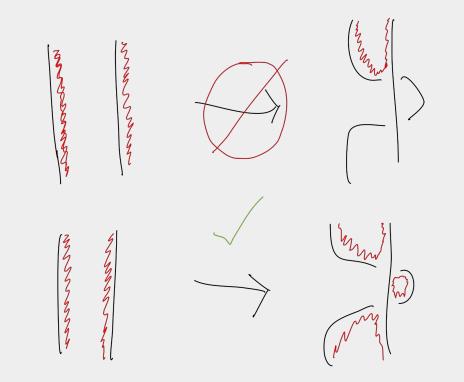
VR move Colorability



R_1 and R_3 moves



R_2 move Colorability



Why this is interesting?

Conjecture: Let $D_n(L)$ be the set of all diagrams of link L with number of virtual crossings, and number of classical crossings less than or equal to n. And let $C_n(L)$ be the subset of diagrams in $D_n(L)$ that are colorable, then $\lim_{n\to\infty} \frac{|C_n(L)|}{|D_n(L)|} = 1$ or 0.

Whenever it is possible to make an r_2 move it is also possible to make a vr_2 move. If r_2 move changes colorability at most 1/2 of the time, then, we know that most moves preserve colorability.

Arrow Polynomial + Colorability

 $A^{s}(K_{i_{1}}^{j_{1}}K_{i_{2}}^{j_{2}}\cdots K_{i_{v}}^{j_{v}}).$

Then the k-degree of this summand is defined to be

 $i_1 \times j_1 + i_2 \times j_2 + \dots + i_v \times j_v$

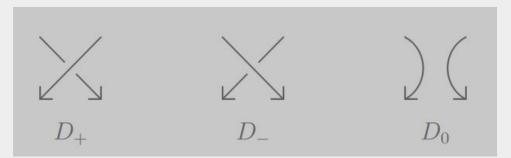
Theorem 4.3. Let D be an oriented checkerboard colorable virtual link diagram. Then

- (1) AS(D) only contains even integer; and
- (2) for any summand $A^s K_{i_1}^{j_1} K_{i_2}^{j_2} \cdots K_{i_v}^{j_v}$ with $1 \leq i_1 < i_2 < \cdots < i_v$, $j_t \geq 1$ for $t = 1, 2, \cdots, v$, and $v \geq 1$ of $\langle D \rangle_{NA}$, we have $2i_v \leq \sum_{t=1}^v i_t \cdot j_t$. In particular, $\langle D \rangle_{NA}$ has no summands like $A^s K_i$.

Deng-Jin-Kauffman (2020)

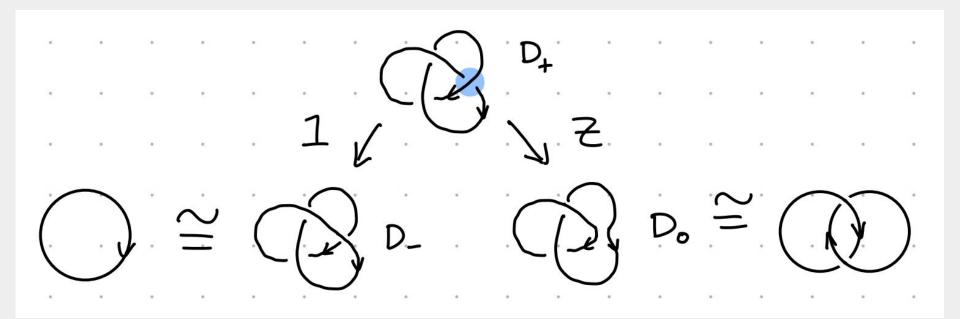
Alexander-Conway Polynomial

Definition: The Alexander-Conway Polynomial $\nabla_D(z) \in \mathbf{Z}[z]$ can be defined using the Skein relation $\nabla_{D^+}(z) - \nabla_{D^-}(z) = z \nabla_{D^0}(z)$, where (D_+, D_-, D_0) is a Skein triple. That is, the diagrams for D_+ , D_- , and D_0 are identical everywhere except a small region where the diagrams are as follows:

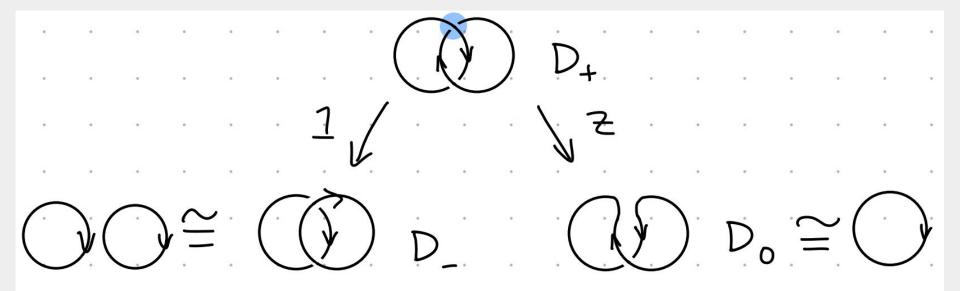


Remark: The Alexander-Conway polynomial is related to the Alexander polynomial $\Delta_{L}(z)$ (Alexander 1928) under the relation $\Delta_{L}(z - z^{-1}) = \nabla_{L}(z^{2})$

Alexander-Conway Polynomial Example



Alexander-Conway Polynomial Example cont.



Alexander-Conway Polynomial Example cont.

 $= Z \bigvee_{(z)} (Z) + V \bigvee_{(z)} (Z)$ $\nabla (z) + z \nabla (z)$ = 2(0+2)+1 $= 2^{2} + 1$

Conway Polynomial

The Conway Polynomial is presented as formulated by J. Sawollek (Sawollek 1999).

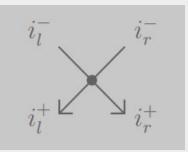
Definition: Let D be a virtual link diagram with $n \ge 1$ classical crossings $c_1, ..., c_n$. Define

$$M_{+} := \begin{pmatrix} 1-x & -y \\ -xy^{-1} & 0 \end{pmatrix} \quad \text{and} \quad M_{-} := \begin{pmatrix} 0 & -x^{-1}y \\ -y^{-1} & 1-x^{-1} \end{pmatrix}.$$

For i = 1, ..., n, let $M_i := M_+$ if c_i is positive, and let $M_i := M_-$ otherwise. Define the 2n x 2n matrix M as a block matrix by M := diag($M_1, ..., M_n$).

Conway Polynomial cont.

Furthermore, consider the graph belonging to the virtual link diagram where the virtual crossings are ignored (i.e. the graph consists of n vertices $v_1, ..., v_n$ and 2n edges $e_1, ..., e_{2n}$). Subdivide the edges into two half edges and label them at each vertex v_i as follows:



A permutation of {1, ..., n} x {I, r} is given by the assignment (i, a) \mapsto (j, b) if the half edges i_a^+ and j_b^+ belong to the same edge of the virtual diagram's graph. Let P denote the corresponding 2n x 2n permutation matrix.

Conway Polynomial cont.

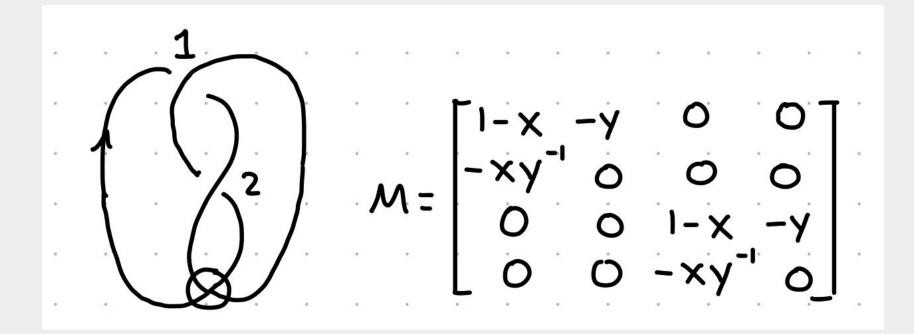
We can define $Z_D(x, y) := (-1)^{w(D)} \det(M - P)$, where w(D) is the writhe of D. One can note that $Z_D(x, y)$ is an invariant of virtual links up to multiplication by a power of $x^{\pm 1}$.

One can define the normalized polynomial $Z'_{D}(x, y) := x^{-N} Z_{D}(x, y)$ where N is the lowest exponent in the variable x of the polynomial $Z_{D}(x, y)$. $Z'_{D}(x, y)$ is an invariant of virtual links.

Note that $Z_{D}(x, y)$ satisfies the skein relation

$$x^{-1/2} Z_{D^+}(x, y) - x^{1/2} Z_{D^-}(x, y) = (x^{-1/2} - x^{1/2}) Z_{D^0}(x, y)$$

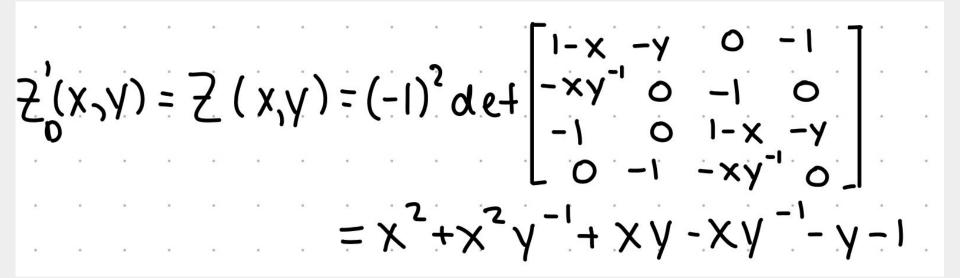
Example of Conway Polynomial



Example of Conway Polynomial (cont.)

 $\rightarrow (2, l)$ $\rightarrow (2, r)$ $\rightarrow (1, r)$ $\rightarrow (1, l)$ r), (2,L) V2 . 1 (2,r)

Example of Conway Polynomial (cont.)



A Result About Conway Polynomial

Let D, D₁, D₂ be virtual link diagrams and let $D_1 \sqcup D_2$ denote the disconnected sum of the diagrams D₁ and D₂. Then the following hold:

a) $Z_{D}(x, y) = Z'_{D}(x, y) = 0$ if D has no virtual crossings

b)
$$Z_{D1 \cup D2}(x, y) = Z_{D1}(x, y) Z_{D2}(x, y)$$
, and $Z'_{D1 \cup D2}(x, y) = Z'_{D1}(x, y) Z'_{D2}(x, y)$

Remark: For a connected sum $D_1 \# D_2$ of virtual link diagrams, a formula of the form

$$Z_{D1 \# D2}(x, y) = C Z_{D1}(x, y) Z_{D2}(x, y)$$

with a constant c does not hold in general.

Remark Regarding Connected Sums

