Virtual Knots, The Arrow Polynomial, and Checkerboard Colorability

By: Lozinskiy Leon, Pranav Jois

Recalling the Bracket Polynomial

$$
\begin{aligned}
& \langle O\rangle=1 \\
& \langle X\rangle=A\langle \rangle\rangle+A^{-1}\langle\backsim \\
& \langle O \sqcup L\rangle=d\langle L\rangle \\
& X(L)=\left(-A^{3}\right)^{-\omega(L)}\langle L\rangle \\
& A=t^{-1 / 4} \rightarrow \text { sones } \quad d=\left(-A^{2}-A^{-2}\right)
\end{aligned}
$$

Recalling the Bracket Polynomial

Recalling the Bracket Polynomial

$$
X(L)=A^{-6}\left(A^{2}+2+A^{-2} d\right)
$$

The arrow polynomial

$$
\begin{aligned}
& \langle 0\rangle=1\left\langle(0\rangle=K_{1},(0\rangle=K_{2},\right. \\
& \langle\lambda\rangle=A\langle\eta\rangle+A^{-1}\left\langle\begin{array}{l}
X \\
\lambda
\end{array}\right\rangle \\
& \left\langle\lambda^{\top}\right\rangle=A\langle\underset{\sim}{\lambda}\rangle+A^{-1}\left\langle\prod\right\rangle \\
& \langle 0 u L\rangle=\lambda\langle L\rangle,\left\langle\langle, u L\rangle=K_{i}\langle L\rangle\right. \\
& N A(L)=\left(-A^{3}\right)^{-\omega(L)}\langle L\rangle \\
& \delta=\left(-A^{2}-A^{-2}\right)
\end{aligned}
$$

The arrow polynomial

The arrow polynomial

$$
N A(L)=A^{-6}\left(A^{2}+\left(2+A^{-2} d\right) K_{1}\right)
$$

Relation to Virtual Crossing number

Theorem 2.3. Let K be a virtual link diagram. Then the virtual crossing number of $K, v(K)$, is greater than or equal to the maximum k-degree of $\langle K\rangle_{A}$.

Dye-Kauffman (2018).

Checkerboard Colorability

VR move Colorability

UR,

$V R_{2}$

R_1 and R_3 moves

R_2 move Colorability

Why this is interesting?

Conjecture: Let $D_{n}(L)$ be the set of all diagrams of link L with number of virtual crossings, and number of classical crossings less than or equal to n. And let $C_{n}(L)$ be the subset of diagrams in $D_{n}(L)$ that are colorable, then $\lim _{n \rightarrow \infty} \frac{\left|C_{n}(L)\right|}{\left|D_{n}(L)\right|}=1$ or 0 .

Whenever it is possible to make an r_{2} move it is also possible to make a $v r_{2}$ move. If r_{2} move changes colorability at most $1 / 2$ of the time, then, we know that most moves preserve colorability.

Arrow Polynomial + Colorability

$$
A^{s}\left(K_{i_{1}}^{j_{1}} K_{i_{2}}^{j_{2}} \cdots K_{i_{v}}^{j_{v}}\right)
$$

Then the k-degree of this summand is defined to be

$$
i_{1} \times j_{1}+i_{2} \times j_{2}+\cdots+i_{v} \times j_{v}
$$

Theorem 4.3. Let D be an oriented checkerboard colorable virtual link diagram. Then
(1) $A S(D)$ only contains even integer; and
(2) for any summand $A^{s} K_{i_{1}}^{j_{1}} K_{i_{2}}^{j_{2}} \cdots K_{i_{v}}^{j_{v}}$ with $1 \leq i_{1}<i_{2}<\cdots<i_{v}$, $j_{t} \geq 1$ for $t=$ $1,2, \cdots, v$, and $v \geq 1$ of $\langle D\rangle_{N A}$, we have $2 i_{v} \leq \sum_{t=1}^{v} i_{t} \cdot j_{t}$. In particular, $\langle D\rangle_{N A}$ has no summands like $A^{s} K_{i}$.

Deng-Jin-Kauffman (2020)

Alexander-Conway Polynomial

Definition: The Alexander-Conway Polynomial $\nabla_{D}(z) \in Z[z]$ can be defined using the Skein relation $\nabla_{D_{+}}(z)-\nabla_{D_{-}}(z)=z \nabla_{D 0}(z)$, where $\left(D_{+}, D_{-}, D_{0}\right)$ is a Skein triple. That is, the diagrams for D_{+}, D_{-}, and D_{0} are identical everywhere except a small region where the diagrams are as follows:

Remark: The Alexander-Conway polynomial is related to the Alexander polynomial $\Delta_{\mathrm{L}}(\mathrm{z})$ (Alexander 1928) under the relation $\Delta_{\mathrm{L}}\left(\mathrm{z}-\mathrm{z}^{-1}\right)=\nabla_{\mathrm{L}}\left(\mathrm{z}^{2}\right)$

Alexander-Conway Polynomial Example

Alexander-Conway Polynomial Example cont.

Alexander-Conway Polynomial Example cont.

$$
\begin{aligned}
\nabla(z) & =z \nabla Q(z)+\nabla(z) \\
& =z[\nabla Q(z)+z \nabla(z)]+\nabla(z) \\
& =z(0+z)+1 \\
& =z^{2}+1
\end{aligned}
$$

Conway Polynomial

The Conway Polynomial is presented as formulated by J. Sawollek (Sawollek 1999).

Definition: Let D be a virtual link diagram with $n \geq 1$ classical crossings C_{1}, \ldots, C_{n}. Define

$$
M_{+}:=\left(\begin{array}{cc}
1-x & -y \\
-x y^{-1} & 0
\end{array}\right) \quad \text { and } \quad M_{-}:=\left(\begin{array}{cc}
0 & -x^{-1} y \\
-y^{-1} & 1-x^{-1}
\end{array}\right)
$$

For $\mathrm{i}=1, \ldots, \mathrm{n}$, let $\mathrm{M}_{\mathrm{i}}:=M_{+}$if c_{i} is positive, and let $M_{i}:=M_{-}$otherwise. Define the $2 n \times 2 n$ matrix M as a block matrix by $M:=\operatorname{diag}\left(M_{1}, \ldots, M_{n}\right)$.

Conway Polynomial cont.

Furthermore, consider the graph belonging to the virtual link diagram where the virtual crossings are ignored (i.e. the graph consists of n vertices v_{1}, \ldots, v_{n} and $2 n$ edges $\left.e_{1}, \ldots, e_{2 n}\right)$. Subdivide the edges into two half edges and label them at each vertex v_{i} as follows:

A permutation of $\{1, \ldots, n\} \times\{I, r\}$ is given by the assignment $(i, a) \mapsto(j, b)$ if the half edges i_{a}^{+}and j_{b}^{+}belong to the same edge of the virtual diagram's graph. Let P denote the corresponding $2 n \times 2 n$ permutation matrix.

Conway Polynomial cont.

We can define $Z_{D}(x, y):=(-1)^{w(D)} \operatorname{det}(M-P)$, where $w(D)$ is the writhe of D. One can note that $Z_{D}(x, y)$ is an invariant of virtual links up to multiplication by a power of $x^{ \pm 1}$.

One can define the normalized polynomial $Z_{D}^{\prime}(x, y):=x^{-N} Z_{D}(x, y)$ where N is the lowest exponent in the variable x of the polynomial $Z_{D}(x, y) . Z_{D}^{\prime}(x, y)$ is an invariant of virtual links.

Note that $Z_{D}(x, y)$ satisfies the skein relation

$$
\mathrm{X}^{-1 / 2} \mathrm{Z}_{\mathrm{D}+}(\mathrm{x}, \mathrm{y})-\mathrm{x}^{1 / 2} \mathrm{Z}_{\mathrm{D}-}(\mathrm{x}, \mathrm{y})=\left(\mathrm{x}^{-1 / 2}-\mathrm{x}^{1 / 2}\right) \mathrm{Z}_{\mathrm{D} 0}(\mathrm{x}, \mathrm{y})
$$

Example of Conway Polynomial

$$
M=\left[\begin{array}{cccc}
1-x & -y & 0 & 0 \\
-x y^{-1} & 0 & 0 & 0 \\
0 & 0 & 1-x & -y \\
0 & 0 & -x y^{-1} & 0
\end{array}\right]
$$

Example of Conway Polynomial (cont.)

$$
\begin{array}{r}
\quad \begin{array}{l}
(1, l) \rightarrow(2, l) \\
(1, r) \rightarrow(2, r) \\
(2, l) \rightarrow(1, r) \\
(2, r) \rightarrow(1, l)
\end{array} \\
P=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & (1, l) \\
0 & 1 & 0 & 0
\end{array}\right](1, r) \\
(2, l) \\
(2, r)
\end{array}
$$

Example of Conway Polynomial (cont.)

$$
\begin{aligned}
Z_{0}^{\prime}(x, y)=Z(x, y) & =(-1)^{2} \operatorname{det}\left[\begin{array}{cccc}
1-x & -y & 0 & -1 \\
-x y^{-1} & 0 & -1 & 0 \\
-1 & 0 & 1-x & -y \\
0 & -1 & -x y^{-1} & 0
\end{array}\right] \\
& =x^{2}+x^{2} y^{-1}+x y-x y^{-1}-y-1
\end{aligned}
$$

A Result About Conway Polynomial

Let D, D_{1}, D_{2} be virtual link diagrams and let $D_{1} \sqcup D_{2}$ denote the disconnected sum of the diagrams D_{1} and D_{2}. Then the following hold:
a) $Z_{D}(x, y)=Z_{D}^{\prime}(x, y)=0$ if D has no virtual crossings
b) $Z_{D 1 \cup D 2}(x, y)=Z_{D 1}(x, y) Z_{D 2}(x, y)$, and $Z_{D 1 \cup D 2}^{\prime}(x, y)=Z_{D 1}^{\prime}(x, y) Z^{\prime}{ }_{D 2}(x, y)$

Remark: For a connected sum $D_{1} \# D_{2}$ of virtual link diagrams, a formula of the form

$$
Z_{D 1 \# D 2}(x, y)=c Z_{D 1}(x, y) Z_{D 2}(x, y)
$$

with a constant c does not hold in general.

Remark Regarding Connected Sums

$1 \quad D_{1} \# D_{2}$
1
$(2 \sim \sim)$
1.

