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The arrow polynomial
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Relation to Virtual Crossing number

Dye-Kauffman (2018).



Checkerboard Colorability



VR move Colorability



R_1 and R_3 moves



R_2 move Colorability



Why this is interesting?



Arrow Polynomial + Colorability

Deng-Jin-Kauffman (2020)



Alexander-Conway Polynomial
Definition: The Alexander-Conway Polynomial ∇D(z) ∈ Z[z] can be defined using 
the Skein relation ∇D+(z) - ∇D-(z) = z ∇D0(z), where (D+, D-, D0) is a Skein triple. 
That is, the diagrams for D+, D-, and D0 are identical everywhere except a small 
region where the diagrams are as follows:

Remark: The Alexander-Conway polynomial is related to the Alexander polynomial 
ΔL(z) (Alexander 1928) under the relation ΔL(z - z-1) = ∇L(z

2)



Alexander-Conway Polynomial Example
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Conway Polynomial
The Conway Polynomial is presented as  formulated by J. Sawollek (Sawollek 
1999).

Definition: Let D be a virtual link diagram with n ≥ 1 classical crossings c1, …, cn. 
Define  

For i = 1, …, n, let Mi := M+ if ci is positive, and let Mi := M- otherwise. Define the   
2n x 2n matrix M as a block matrix by M := diag(M1, …, Mn). 



Conway Polynomial cont.
Furthermore, consider the graph belonging to the virtual link diagram where the 
virtual crossings are ignored (i.e. the graph consists of n vertices v1, …, vn and 2n 
edges e1, …, e2n). Subdivide the edges into two half edges and label them at each 
vertex vi as follows: 

A permutation of {1, …, n} x {l, r} is given by the assignment (i, a) ⟼ (j, b) if the half 
edges ia

+ and jb
+ belong to the same edge of the virtual diagram’s graph. Let P 

denote the corresponding 2n x 2n permutation matrix. 



Conway Polynomial cont.

We can define ZD(x, y) := (-1)w(D) det(M - P), where w(D) is the writhe of D. One 
can note that ZD(x, y) is an invariant of virtual links up to multiplication by a power 
of x±1. 

One can define the normalized polynomial Z’D(x, y) := x-N ZD(x, y) where N is the 
lowest exponent in the variable x of the polynomial ZD(x, y). Z’D(x, y) is an invariant 
of virtual links.

Note that ZD(x, y) satisfies the skein relation 
x-1/2 ZD+(x, y) - x1/2 ZD-(x, y) = (x-1/2 - x1/2) ZD0(x, y)



Example of Conway Polynomial
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A Result About Conway Polynomial 

Let D, D1, D2 be virtual link diagrams and let D1⊔ D2 denote the disconnected sum 
of the diagrams D1 and D2. Then the following hold:

a) ZD(x, y) = Z’D(x, y) = 0 if D has no virtual crossings

b) ZD1 ⊔ D2 (x, y) = ZD1(x, y) Z D2(x, y), and Z’D1 ⊔ D2 (x, y) = Z’D1(x, y) Z’ D2(x, y) 

Remark: For a connected sum D1 # D2 of virtual link diagrams, a formula of the 
form 

ZD1 # D2 (x, y) = c ZD1(x, y) Z D2(x, y)

with a constant c does not hold in general.



Remark Regarding Connected Sums


